首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6261篇
  免费   612篇
  国内免费   927篇
化学   7010篇
晶体学   14篇
力学   4篇
综合类   26篇
数学   259篇
物理学   487篇
  2024年   1篇
  2023年   58篇
  2022年   81篇
  2021年   139篇
  2020年   281篇
  2019年   232篇
  2018年   175篇
  2017年   176篇
  2016年   283篇
  2015年   252篇
  2014年   259篇
  2013年   600篇
  2012年   367篇
  2011年   383篇
  2010年   357篇
  2009年   375篇
  2008年   480篇
  2007年   465篇
  2006年   448篇
  2005年   419篇
  2004年   413篇
  2003年   307篇
  2002年   232篇
  2001年   167篇
  2000年   100篇
  1999年   99篇
  1998年   85篇
  1997年   70篇
  1996年   66篇
  1995年   74篇
  1994年   78篇
  1993年   80篇
  1992年   58篇
  1991年   38篇
  1990年   30篇
  1989年   18篇
  1988年   14篇
  1987年   6篇
  1986年   10篇
  1985年   4篇
  1984年   6篇
  1983年   4篇
  1982年   3篇
  1981年   2篇
  1979年   1篇
  1978年   2篇
  1977年   1篇
  1974年   1篇
排序方式: 共有7800条查询结果,搜索用时 15 毫秒
11.
Benzyl-substituted boronates and borates are widely employed as mild sources in radical or anionic transfer reactions of benzyl entities. In this process the B−C bond to the benzyl moiety is essentially ruptured. In contrast, reactions with retention of the B−C bond are poorly investigated although several other reactive sites in benzyl–boron systems are clearly inherent. In this respect, the novel reactivity of the representative borane adduct IiPr−BH2Bn [IiPr=:C{N(iPr)CH}2, Bn=CH2C6H5] is demonstrated. Dihalogenation of the BH2 entity is observed with BCl3 and BBr3, whereas BI3 either affords IiPr−BHI2 or proceeds with borylation of the aromatic phenyl ring to give a hydride-bridged bisborylated species. The photochemical mono- and dihalogenation of the benzylic CH2 group was demonstrated with elemental bromine Br2. The brominated product IiPr−BBr2−CHBr−C6H5 was borylated at the benzylic carbon atom in an umpolung event with BI3 to afford the zwitterion IiPr−BI−CH(BI3)−C6H5.  相似文献   
12.
In this work, the first example of a radical stereodivergent reaction directed towards the stereoselective synthesis of both (R*,R*)- and (R*,S*)-2,2′-biflavanones promoted by samarium diiodide is reported. Control experiments showed that the selectivity of this reaction was exclusively controlled by the temperature. It was possible to generate a variety of 2,2′-biflavanones bearing different substitution patterns at the aromatic ring in good-to-quantitative yields, being both stereoisomers of the desired compounds obtained with total or high control of selectivity. A mechanism that explains both the generation of the corresponding 2,2′-biflavanones and the selectivity is also discussed. The structure and stereochemistry determination of each isomer was unequivocally elucidated by single-crystal X-ray diffraction experiments.  相似文献   
13.
We develop the chemistry of boron difluoride hydrazone dyes (BODIHYs) bearing two aryl substituents and explore their properties. The low-energy absorption bands (λmax=427–464 nm) of these dyes depend on the nature of the N-aryl groups appended to the BODIHY framework. Electron-donating and extended π-conjugated groups cause a redshift, whereas electron-withdrawing groups result in a blueshift. The title compounds were weakly photoluminescent in solution and strongly photoluminescent as thin films (λPL=525–578 nm) with quantum yields of up to 18 % and lifetimes of 1.1–1.7 ns, consistent with the dominant radiative decay through fluorescence. Addition of water to THF solutions of the BODIHYs studied causes molecular aggregation which restricts intramolecular motion and thereby enhances photoluminescence. The observed photoluminescence of BODIHY thin films is likely facilitated by a similar molecular packing effect. Finally, cyclic voltammetry studies confirmed that BODIHY derivatives bearing para-substituted N-aryl groups could be reversibly oxidized (Eox1=0.62–1.02 V vs. Fc/Fc+) to their radical cation forms. Chemical oxidation studies confirmed that para-substituents at the N-aryl groups are required to circumvent radical decomposition pathways. Our findings provide new opportunities and guiding principles for the design of sought-after multifunctional boron difluoride complexes that are photoluminescent in the solid state.  相似文献   
14.
Thermal decarbonylation of the acyl compounds [Mn(CO)5(CORF)] (RF=CF3, CHF2, CH2CF3, CF2CH3) yielded the corresponding alkyl derivatives [Mn(CO)5(RF)], some of which have not been previously reported. The compounds were fully characterized by analytical and spectroscopic methods and by several single-crystal X-ray diffraction studies. The solution-phase IR characterization in the CO stretching region, with the assistance of DFT calculations, has allowed the assignment of several weak bands to vibrations of the [Mn(12CO)4(eq-13CO)(RF)] and [Mn(12CO)4(ax-13CO)(RF)] isotopomers and a ranking of the RF donor power in the order CF3<CHF2<CH2CF3≈CF2CH3. The homolytic Mn−RF bond cleavage in [Mn(CO)5(RF)] at various temperatures under saturation conditions with trapping of the generated RF radicals by excess tris(trimethylsilyl)silane yielded activation parameters ΔH and ΔS that are believed to represent close estimates of the homolytic bond dissociation thermodynamic parameters. These values are in close agreement with those calculated in a recent DFT study (J. Organomet. Chem. 2018 , 864, 12–18). The ability of these complexes to undergo homolytic Mn−RF bond cleavage was further demonstrated by the observation that [Mn(CO)5(CF3)] (the compound with the strongest Mn−RF bond) initiated the radical polymerization of vinylidene fluoride (CH2=CF2) to produce poly(vinylidene fluoride) in good yields by either thermal (100 °C) or photochemical (UV or visible light) activation.  相似文献   
15.
Organic spin-based molecular materials are considered to be attractive for the generation of functional materials with emergent optoelectronic, magnetic, or magneto-conductive properties. However, the major limitations to the utilization of organic spin-based systems are their high reactivity, instability, and propensity for dimerization. Herein, we report the synthesis, characterization, and magnetic and electronic studies of three ambient stable radical ions ( 1 a.+ , 1 b.+ , and 1 c.+ ). The radical ions 1 b.+ and 1 c.+ with BPh4 and BF4 counter anions, respectively, were synthesized in excellent yields by means of anion metathesis of 1 a.+ with Br as its counter anion. Notably, synthesis of 1 a.+ was achieved in an ecofriendly, solvent-free protocol. The radical ions were characterized by means of single-crystal X-ray diffraction studies, which revealed the discrete nature of the radical ions and extensive hydrogen-bonding interactions within the radical ions and with the counter anions. Thus, radical ions can be organized to form infinite supramolecular arrays using weak noncovalent interactions. In addition, the Br, BF4, and BPh4 anions formed diverse types of anion–π interactions with the naphthalene and imide rings of the radical ions. The radical ions were characterized by means of X-band electron paramagnetic resonance (EPR) spectroscopy in solution and in the solid state. Magnetic studies revealed their paramagnetic nature in the range of 10 to 300 K. The radical ions exhibited high resistivity approaching the gigaohm (GΩ) scale. In addition, the radical ions exhibited panchromism.  相似文献   
16.
A series of methacrylates bearing bicyclobis(γ‐butyrolactone) (BBL) moiety were synthesized and radically polymerized to afford the corresponding poly(methacrylate)s bearing BBL moiety in the side chain, with expecting that the high polarity and rigidity of BBL would be inherited by the polymers. The resulting polymers were soluble in polar aprotic solvents such as dimethyl sulfoxide and N,N‐dimethylformamide because of the high polarity of the BBL moiety. The glass transition temperatures (Tg) of the polymers depended on the length of methylene linker that tethered the methacrylate and BBL moieties, making the use of shorter linkers lead to higher Tgs. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 2462–2468  相似文献   
17.
The impact of reversible bond formation between a growing radical chain and a metal complex (organometallic‐mediated radical polymerization (OMRP) equilibrium) to generate an organometallic intermediate/dormant species is analyzed with emphasis on the interplay between this and other one‐electron processes involving the metal complex, which include halogen transfer in atom transfer radical polymerization (ATRP), hydrogen‐atom transfer in catalytic chain transfer (CCT), and catalytic radical termination (CRT). The challenges facing the controlled polymerization of “less active monomers” (LAMs) are outlined and, after reviewing the recent achievements of OMRP in this area, the perspectives of this technique are analyzed.  相似文献   
18.
Single‐chain folding via intramolecular noncovalent interaction is regarded as a facile mimicry of biomacromolecules. Single‐chain folding and intramolecular crosslinking is also an effective method to prepare polymer nanoparticles. In this study, poly(methyl methacrylate‐co?2‐ureido‐5‐deazapterines functionalized ethylene methacrylate) (P(MMA‐co‐EMA‐DeAP)) is synthesized via free radical polymerization. The single‐chain folding of P(MMA‐co‐EMA‐DeAP) and the formation of the nanoparticles in diluted solution (concentration <0.005 mg/mL) are achieved via supramolecular interaction and intramolecular collapsing during the disruption‐reformation process of the hydrogen bonding triggered by water. The size and the morphology of the nanoparticles are characterized by dynamic light scattering, transmission electron microscope, and atomic force microscope. The results show that the size of the nanoparticles depends on the molecular weight of the polymer and the loading of 2‐ureido‐5‐deazapterines functionalized ethylene methacrylate (EMA‐DeAP) on the polymer backbone. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 1832–1840  相似文献   
19.
The synthesis of vinyl alcohol copolymers is limited due to the poor radical reactivity of vinyl acetate (VAc), the traditional precursor to polyvinyl alcohol (PVA). Main group monomers such as BN 2-vinylnaphthalene (BN2VN) have attracted attention as alternatives to VAc to form side chain hydroxyls via oxidation, but outstanding questions of molecular weight control remain. Herein we report systematic investigation of solvent, temperature, and initiator concentration as factors influencing BN2VN degree of polymerization. We find increased chain transfer to toluene, hypothesized to arise from differences in radical stabilization and reactivity by aromatic and BN aromatic rings. As a result of these combined efforts, high molecular weight (Mw ~ 105 g mol−1) BN2VN homopolymers and BN2VN-styrene copolymers were obtained.  相似文献   
20.
NOO-type tridentate Schiff base, N-salicylidene-2-aminobenzoic acid, (H2L), and its ternary Cu (II) complex containing H2L Schiff base and 4,7-dimethyl-1,10-phenanthroline (4,7-dmphen), [Cu(4,7-dmphen)(H2L)]27H2O, have been synthesized and characterized by CHN analysis, ESI-MS, FTIR, and single-crystal X-ray diffraction techniques. The interaction of alone H2L Schiff base ligand and ternary Cu (II) complex with biomacramolecules {calf thymus DNA (CT-DNA) and bovine serum albumin (BSA)} has been investigated by electronic absorption and fluorescence spectroscopy. The experimental results indicate that H2L Schiff base ligand and ternary Cu (II) complex bind to CT-DNA by means of a moderate intercalation mode. Furthermore, the fluorescence quenching mechanism between H2L Schiff base ligand and ternary Cu (II) complex with BSA possesses a static quenching process. Radical scavenging activity of H2L Schiff base ligand and ternary Cu (II) complex was measured in terms of EC50, using the DPPH and H2O2 methods. Biomacromolecule interactions and scavenging activity studies revealed that ternary Cu (II) complex yielded better results than H2L Schiff base ligand alone.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号